
STATE MANAGEMENT

Stephen Schaub



State Management Options
2

 Global

 Per-Request

 Cookies

 Session



Globally Shared State
3

 Data to be shared by all users can be stored in global script variables

 To expose a global object throughout an express app, add it as a 

property of app.locals

 app.locals.db = mydatabase;

 Once set, a property persists in app.locals for the lifetime of the 

application

 Use for:

 Constants and objects needed throughout app



Per-Request State
4

 Data needed for the duration of a single request can be stored in the 

res.locals collection:

 res.locals.productId = req.params.id;

 This collection does not persist between requests

 Use this to pass information along Node.js middleware chain



Cookies
5

 Use cookies for data that needs to persist between requests

 Set a cookie in middleware or route callback using res.cookie()

res.cookie('rememberme', '1', { maxAge: 900000 });

 Must set cookies before using res.send() or res.render()

 res.cookie() sends cookie to browser using Set-cookie: HTTP header

Set-Cookie: rememberme=1; Expires=Wed, 21 Oct 2015 07:28:00 GMT

 See https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

 Browser sends cookie back to server on subsequent requests until cookie expires

 Access in middleware or route callback using req.cookie.cookiename

 Requires cookie-parser middleware

 Example: webapps/cookiedemo



Viewing Cookies in the Browser
6

 Use browser developer tools



Session
7

 Cookies give us a way to store per-user state in the browser

 Web applications often need a way to maintain per-user state on the 

server

 Use express-session module to get session state capabilities

 Example: webapps/sessiondemo



How express-session Works
8

 Maintains a collection of session objects in memory

 Each session object is associated with a separate browser that has 
recently accessed the app

 A small cookie associates remote browser with a session object

 express-session middleware checks for the session cookie

 If found, lookup session object associated with cookie and populate 
req.session with the object

 If not found, create new session cookie and associate with new session object

 For production, must pick an appropriate session storage mechanism

 Default express session store does not expire sessions, causing memory leak



Cookies vs. Session

 Store limited amount of state

 Increase size of HTTP 

request/response

 Cookie data subject to 

modification by client

 Larger storage capacity

 In-memory sessions limit 

scalability

 Not subject to client tampering

9

Cookies Session



Passing Data Between Pages
10

 Query Strings

 Hidden Form Fields

 Session

 Cookies

 See examples/webapps/register_validation



Navigating Between Pages
11

 Multi-page applications need to navigate between pages

 Two techniques:

 Client-side redirect

 Server-side transfer

 Issues:

 Does browser URL reflect current page?

◼ Related: Will user bookmark / refresh the resulting page?

 Data transfer from source to target page

 Performance



Page Navigation Techniques Compared

 Use res.redirect("/dest/page")

 Outputs 302 to browser

 Browser sends GET request for 

/dest/page

 Transfer data between pages 

using cookie, session or query 

string

 Use res.render("dest/page")

 Pass data from source page 

directly to target template

12

Client-Side Redirect Server-Side Transfer



Flash Messages
13

 When transferring from one page to another with a redirect, want a 

convenient way for the source page to set a message to be displayed 

on the destination page

 connect-flash middleware uses the session to do this

 https://github.com/jaredhanson/connect-flash


